Serveritehnoloogia tipptase ja tulevik 2025

Madis Pärn IT Arhitekt ATEA

madis.parn@atea.ee

ATER

- Technology Trends
- Key .Next Technology Enablers
 - Intel Xeon 6 detour
 - A Look at DPU
- Cooling Technologies
- OCP Open Architecture

Agenda

PowerEdge Servers

Purpose-built | Intelligent | Cyber Resilient

Purpose-built

Scale AI, Edge & Performance Anywhere

Intelligent

Accomplish more with Automation & Improve Operational Efficiencies

Accelerate Zero Trust Adoption

ılllı

Cyber Resilient

Subscribe or Consume aaS with APEX

Copyright © Dell Inc. All Rights Reserved.

Evolving customer needs met with purpose-built servers

- AI models need to access data where it lives and where it is created
- Moving data sets creates risk, complexity and the potential for added costs

- Higher power CPU & GPUs will require Liquid cooling & increased Power Consumption
- Meet future data center needs and enable data center refresh cycles

- Silicon diversity: Increasing options for CPUs, GPUs, and Accelerators
- Faster upgrade to technology enablers, e.g. DDR5, E3.S, Smart NICs, DPUs, CXL etc.

PowerEdge .Next purpose-built servers

DATA CENTERS

VISUAL CAPITALIST

Who is driving the design?

~2/3 of Global DC IT spend is Hyperscale CSPs

Rest is Enterprise with share decreasing

these regions. Cutolf is at rank 25 (Ukraine). As of March 2024. Source: Cloudscene, Statista

jht © Dell Inc. All Rights Reserved.

The next generation PowerEdge server portfolio

Purpose-built to address evolving customer needs

TECHNOLOGY ENABLERS

Technology Enablers

7 Copyright © Dell Inc. All Rights Reserved.

Next-Gen CPU Overview

Multi-vendor chip manufactures offering the best solutions for all workloads.

Solutions for workloads in Mainstream Enterprise, AI/ML inferencing, Dense Virtualization, Data Analytics. HPC/HFT, Design and Simulation balanced by versatile and entry-level offerings.

Leading-edge architectures offer higher performance, improved power efficiency, expanded memory and richer storage configurations.

Trusted performance, exceptional efficiency.

Next-Gen Processors, the Best Solutions for all **Workloads**

AMD EPYC Turin • 1S & 2S Up to 192 cores Up to 500W TDP DDR5: Up to 6000 MT/s Advanced I/O: Up to 128 lane

PCIe 5.0/CXL 2.0 Multi-threaded •

•

•

Efficiency E-Core SP (Sierra Forest)

- 1S & 2S
- Up to 144 cores
- Up to 330W TDP
- DDR5: Up to 6400 MT/s
- Advanced I/O: Up to 88 lanes PCIe 5.0/CXL 2.0
- Single threaded

- Performance P-Core SP (Granite Rapids)
- 1S & 2S

Intel[®] Xeon[®] 6

- Up to 128 cores •
- Up to 500W TDP ٠
- DDR5: Up to 6400 MT/s ٠
- Advanced I/O: Up to 88 lanes PCIe 5.0/CXL 2.0; Rich I/O SKUs up to 136 lanes
- Multi-threaded

New capabilities & technologies for the next gen...

Help customers with no compromise native computing and higher cache for technical compute with expanded AMD 9004 series

No Compromise Native Computing with Zen4c and next gen 3D die stacking technology

- AMD 97X4 "Zen4c" (Bergamo) processors optimized for scale-out performance, significant power efficiency and density-optimized cache hierarchy Increased socket level performance driving lower TCO
 - Option as alternative to ARM with dense core counts, better memory density and performance with 12 ch DDR5 4800MT/s, support multi-threading apps, and leverage existing x86 software applications with little to no code changes
- AMD 96X4X "Zen4" (Genoa-X) processors optimized for Technical Compute and High Cache per core workloads
 - · Leadership Socket and Per-Core Performance for EDA, CFD and FEA workloads
- Socket, infrastructure, BIOS and software compatible with "Genoa"

1. More cores

With Zen 4c "Bergamo", 100% more core count over previous 8003 generation, Up to 128 SMT-capable (Simultaneous Multithreading) supported and up to 96 cores with Zen 4 with 3D V-Cache

2. Thread Density

AMD EPYC[™] 9004

Zen4c & Zen4

AMD "Bergamo" highest Thread Density for highest HPL/FLOP performance and with up to 128C focused on perf/watt.

2.5X-3.9X improvements on key cloud native workloads

3. Cache

2743

AMD "Genoa-X" >1GC of L3 Cache providing highest Perf/Core Focused on highly cache bound workloads, relieves memory bandwidth pressure and reduces latency

PowerEdge with AMD Processors

- Next gen iDRAC 10, Latest memory, IO
- Our technology ecosystem for the future (DLC Solution, GPU, DPU, Storage, Memory Solutions)
- Enables CXL 2.0 features
- Limited configs at launch with feature complete planned for 2025Q2

Higher performance, greater cores, faster memory & IO

Single Socket

Two Socket

- PowerEdge R6715
- Powered by one AMD Turin proc, up to 160 cores
- 2DPC with up to 24x DDR5 up to 5200 MT/s
- 3.5", 2.5", E3.S drive options (up to 22x)
- 100% Gen5 IO, Dual OCP with most configs

PowerEdge R7715

- Powered by one AMD Turin proc, up to 160 cores
- 2DPC with up to 24x DDR5 up to 5200 MT/s
- 3.5", 2.5", E3.S drive options (up to 40x)
- 100% Gen5 IO, Dual OCP with most configs

PowerEdge R6725

- Powered by two AMD Turin proc, up to 192 cores
- 1DPC with up to 24x DDR5 up to 6000MT/s
- 3.5", 2.5", E3.S drive options (up to 22x)
- 100% Gen5 IO, Dual OCP with most configs

PowerEdge R7725

- Powered by two AMD Turin proc, up to 192 cores
- 1DPC with up to 24x DDR5 up to 6000MT/s
- 3.5", 2.5", E3.S drive options (up to 40x)
- 100% Gen5 IO, Dual OCP with most configs

0 Copyright © Dell Inc. All Rights Reserved

PowerEdge with Intel Processors

- Focused CSP Edition launch in July '24 with E-core CPUs and OSM 3.0
- Additional configs available
 in 2024Q4 & 2025Q2
- Technology ecosystem for the future with E-Core & P-Core procs, DLC, GPU, DPU, E3 Storage & DDR5-6400
- Advanced management with iDRAC 10 and OSM 3.0
- CXL 2.0 Enabled

Comprehensive portfolio to meet diverse customer needs

*CSP Edition with OSM launches in July '24, and the mainstream edition with iDRAC follows in 2024Q4

Intel Xeon 6 detour

12 Copyright © Dell Inc. All Rights Reserved.

Get to New Levels of Efficiency and Performance with Built-In Accelerators

Intel[®] Accelerator Engines are built-in accelerators on Intel[®] Xeon[®] Scalable processors that increase ROI and open the door to new degrees of system power efficiency and performance that cannot be achieved by simply adding more cores.

Built-In Accelerators

(subset of accelerators available on Intel® Xeon® Scalable processor)

https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/overview.html

Make the best use of CPU core resources with built-in accelerators

	AMX	IAA	DSA	DLB	QAT
	for Al	for data analytics	for 5G/networks	for storage	for cloud
intel. XEON [®]	Accelerate AI workloads 3x to 5x for deep learning inference on SSD- ResNet34 and up to 2x for training on ResNet50 v1.5 with Intel® Advanced Matrix Extensions (Intel® AMX) compared with the previous generation. ¹	Improve database and analytics performance with 1.91x higher throughput for data decompression in the open source RocksDB engine, using Intel® In- Memory Analytics Accelerator (Intel® IAA) compared to software compression on cores without acceleration. ⁴	Get better networking performance and efficiency with built-in accelerators. Gain up to 1.8x higher throughput for packet processing on Open vSwitch (OVS)4 with Intel® Data Streaming Accelerator (Intel® DSA) compared to software on cores without acceleration. ³	Get up to 3.27x performance on packet forwarding with Intel® Dynamic Load Balancer (Intel® DLB) vs. software queue management on cores without acceleration. ³	Run cloud and networking workloads using fewer cores with faster cryptography. Increase client density by up to 4.35x on an open source NGINX web server with Intel® QuickAssist Technology (Intel® QAT) using RSA4K compared to software running on CPU cores without acceleration. ²

Intel[®] Xeon[®] 6 (@2025-01)

2 Products COMPARE ALL							
Product Name	Launch Date	Total Cores	Max Turbo Frequency	Processor Base Frequency	Cache	TDP	
Intel [®] Xeon [®] 6952P Processor	Q3'24	96	3.9 GHz	2.1 GHz	480 MB	400 W	
Intel [®] Xeon [®] 6960P Processor	Q3'24	72	3.9 GHz	2.7 GHz	432 MB	500 W	
Intel [®] Xeon [®] 6972P Processor	Q3'24	96	3.9 GHz	2.4 GHz	480 MB	500 W	
Intel® Xeon® 6979P Processor	Q3'24	120	3.9 GHz	2.1 GHz	504 MB	500 W	
Intel [®] Xeon [®] 6980P Processor	Q3'24	128	3.9 GHz	2 GHz	504 MB	500 W	
Intel [®] Xeon [®] 6710E Processor	Q2'24	64	3.2 GHz	2.4 GHz	96 MB	205 W	
Intel [®] Xeon [®] 6731E Processor	Q2'24	96	3.1 GHz	2.2 GHz	96 MB	250 W	
Intel® Xeon® 6740E Processor	Q2'24	96	3.2 GHz	2.4 GHz	96 MB	250 W	
Intel [®] Xeon [®] 6746E Processor	Q2'24	112	2.7 GHz	2 GHz	96 MB	250 W	
Intel® Xeon® 6756E Processor	Q2'24	128	2.6 GHz	1.8 GHz	96 MB	225 W	
Intel® Xeon® 6766E Processor	Q2'24	144	2.7 GHz	1.9 GHz	108 MB	250 W	
Intel [®] Xeon [®] 6780E Processor	Q2'24	144	3 GHz	2.2 GHz	108 MB	330 W	

TECHNOLOGY ENABLERS

Back to Technology Enablers

16 Copyright © Dell Inc. All Rights Reserved.

Next-Gen Memory Overview

- Higher speed offering with DDR5 technology along with the following improvements
 - Memory bus speeds of 6400MT/s and above expected,
 - Single bit error correction in DRAM die
 - Support for up to 32Gb density DRAM
 - Enhanced data integrity feature
- Scalability for multi-core workload
- Post package repair now available

Latest Memory Technology, higher speed & bandwidth

DIMMs Capacities

DDR5* (16Gb/ 24Gb/ 32Gb density, 6400MT/s)

- 16GB RDIMMs
 - (Mar CY25)
- 32GB RDIMMs
 - (June CY24)
- 64GB RDIMMs
 - (June CY24)
- 96GB RDIMMs
 - (Nov CY24)
- 128GB RDIMMs
 - (Dec CY24)
- 256GB RDIMMs
 - (Mar CY25)

DIMMs per System

- Intel Sierra Forest/Intel Granite Rapids
 - 2 socket servers up to 32 DIMMs
 - 1 socket servers: up to 16 DIMMs
- AMD Turin
 - 2 socket servers: 24 DIMMs
 - 1 socket servers: 24 DIMMs

6400MT/s Max Memory Bus

- Higher memory bus speed
- Intel Xeon 6
 - Max CPU memory bus speed is up to 6400MT/s
- AMD Turin
 - Max CPU memory bus speed is up to 6000MT/s

*Dell does not support DIMM capacity mixing on 17th Generation

**17th Generation memory will have staggered launch; exact launch dates will be communicated through 411

PCle Gen 5

Technologies taking advantage of PCIe Gen 5

- NVMe Drives
- GPUs
- DPUs
- NICs
- CXL

Database and AI/ML workloads will benefit from the new bandwidth

PCIe Gen 5: Future proofing servers for the new ecosystem

- PCIe Gen 5 is twice the speed of PCIe Gen 4 with backward compatibility
- PCIe Gen 5 32 GTs data rate vs PCIe Gen 4 16 GTs data rate
- PCIe Gen 5 has full duplex bandwidth for x16 interface at 128 GB/s vs Gen 4 at 64 GB/s

CXL Memory Expansion Overview

Compute Express Link (CXL) Memory

- Seamlessly integrates into supported PCIe slots for enhanced memory capacity.
- Facilitates high-speed, low-latency communication between CPUs and devices for optimized performance.

https://computeexpresslink.org/

CXL adds channels to attach memory

More memory bandwidth Up to 25% more vs 8 channels of native DDR5 6400 MT/s alone

()

More memory capacity Up to 50% more vs sixteen native DDR5 128GB DIMMs alone

Right-sizing memory capacity Add memory capacity and bandwidth to existing system DDR configs

CXL Memory Devices	R770	R670	R7725	R7715
CXL DIMM Add- In-Card	٠	٠	٠	٠

• PCIe connection: x16 PCIe single wide slot. This device can also connect on x8 PCIe slot

Up to two AICs per CPU

• Max capacity with AIC per CPU 1TB

GPU Accelerators

Broad multi-vendor portfolio catering to applications ranging from the Cloud to Core to Edge

Solutions for targeted workloads in Gen AI, ML/DL, HPC, VDI, Data Analytics balanced by versatile and entry-level offerings to boost utilization, help the AI journey

Leading edge technology ingredients in core & memory architecture, fabrication technology, air and liquid cooling, interconnect bandwidths to deliver breakthrough performance

Growing ecosystem of frameworks, GPU- accelerated libraries that are optimized & ready-to-deploy and the necessary development tools

Accelerate insight and innovation with Dell's GPU portfolio on PowerEdge servers

Brand	GPU Model	GPU Memory	Max Power Consumption	Form-factor	2-way Bridge	Recommended Workloads			
PCIe Adapter form-factor									
Nvidia	A2	16 GB GDDR6	60W	SW, HHHL or FHHL	n/a	Al Inferencing, Edge, VDI			
Nvidia	L4	24 GB GDDR6	72W	SW, HHHL or FHHL	n/a	Al Inferencing, Edge, VDI			
Intel	Flex 140	12 GB GDDR6	75W	SW, HHHL or FHHL	n/a	Al Inferencing, Edge, VDI			
Nvidia	A16	64 GB GDDR6	250W	DW, FHFL	n/a	VDI			
Nvidia	L40	48 GB GDDR6	300W	DW, FHFL	Ν	Performance graphics, Multi-workload			
Nvidia	L40S	48 GB GDDR6	350W	DW, FHFL	Ν	Al Inferencing, Multi-workload			
AMD	MI210	64 GB HBM2e	300W	DW, FHFL	Y	HPC, AI Training			
Nvidia	H100 NVL	94 GB HBM3	400W	DW, FHFL	Y	AI Training, HPC, AI Inferencing			
Nvidia	H200 NVL *	141 GB HBM3e	450W-600W	DW, FHFL	Y	AI Training, HPC, AI Inferencing			
			SXM / OA	M form-factor					
Nvidia	HGX H100	80 GB HBM3 or 94 GB HBM2e	700W	SXM w/ NVLink	n/a	AI Training, Inferencing, HPC			
Nvidia	HGX H200	141 GB HBM3e	700W	SXM w/ NVLink	n/a	AI Training, Inferencing, HPC			
Nvidia	HGB B200 **	Up to 192GB HBM3e	1000W	SXM w/ NVLink	n/a	AI Training, Inferencing			
AMD	MI300X	192 GB HBM3	750W	OAM w/ XGMI	n/a	AI Training, Inferencing			
Intel	Gaudi3	128 GB HBM2e	850W	OAM w/ RoCE	n/a	Al Inferencing, Training			

* - Development or under evaluation **-See your local 411 updates

PCIe with 2-way Bridge

4-way SXM / OAM Baseboard

8-way SXM / OAM Baseboard

D&LLTechnologies

20 Copyright © Dell Inc. All Rights Reserved.

EDSFF-E3

Increased Performance

• Supports PCIe Gen5; 100% increase in Sequential Reads, 62% increase in Sequential Writes, 60% improvement in Random Reads, and 33% improvement in Random Writes

Greater Storage Density

- 60% increase on 1U and 33% increase on 2U
- Total capacity increase:

	15G	16G
1U	154TB	245TB
2U	368TB	491TB

Improved Thermals

- Airflow can be optimized
- through the server due to the smaller drive size

EDSFF and E3.S, a form factor optimized for SSDs and the future of Server Storage

- EDSFF is a new family of form factors optimized for Flash storage devices designed to support high frequency interfaces like PCIe Gen5 and Gen6
- PowerEdge will utilize the E3.S form factor and it will be the launch vehicle for PCIe Gen5 NVMe
- E3.S is roughly half the size of a 2.5" SSD benefitting density, thermals, and improved packaging in space constrained servers
- E3.S SSDs will have the same Serviceability and Manageability as our current 2.5" SSDs

(EDSFF E3.S 2T will not be supported)

BOSS N1 for Next-Gen Servers

Boot Optimized Storage Solution (BOSS) uses 1 or 2 M.2 devices to store the OS, allowing customers the ability to segregate their boot devices from primary storage

- BOSS N1 for 17th Generation leverages 16th Generation BOSS chip, Marvell NevoX with some additional features and a new form factor
 - Root of Trust Authenticates FW and BIOS
 - Flat Bread Form Factor BOSS Flat Bread form factor to support DC-MHS, modular design able to support multiple applications
- Key Features:
 - Supports UEFI Boot Only
 - Secure Firmware update
 - Marvell NevoX chip
 - Supports 480GB and 960GB M.2 2280 NVMe
 - LKM and SEKM support for SED and FIPS M.2 NVMe
 - SMCU for Root of Trust
 - Supports HW RAID1 and RAID0
 - Hot Serviceable
 - DC-MHS Modularity

Platinum and Titanium efficiency

- PSU efficiency is dictated by the <u>80 Plus certification program</u>
- Testing and certification is performed at specific voltages: 115Vac and 230Vac
 - 80 Plus standard does not cover DC voltage inputs or higher AC voltages such as 277Vac
- Performance testing is done at various load levels
 - For example, an 1100W Titanium PSU is 96% efficient at 550W power draw (50% load)

• EU ErP Lot9

- Since January 1st, 2024, Titanium PSU are required to ship into CE countries
- Energy Star 4.0
 - From January 12th, 2024, Titanium PSU are required for 750W or greater, in order to comply with Energy Star

80 PLUS Certification	115V	115V Internal Non-Redundant		2	30V Intern	al Redund	ant
% of Rated Load	20%	50%	100%	10%	20%	50%	100%
80 PLUS	80%	80%	80%		1	A/A	
80 PLUS Bronze	82%	85%	82%		81%	85%	81%
80 PLUS Silver	85%	88%	85%		85%	89%	85%
80 PLUS Gold	87%	90%	87%		88%	92%	88%
80 PLUS Platinum	90%	92%	89%		90%	94%	91%
80 PLUS Titanium		***		90%	94%	96%	91%
80 PLUS	80 PLUS	80 PLUS	80 PLUS	80 PLUS	8		

Required Efficiency depending on % of Rated Load

Jumper Cords

Next-Gen M-CRPS PSU

- 1500W Titanium
- 1100W Platinum
- 800W Platinum
- Following wattages:
 - 3200W Titanium
 - 1100W Titanium
 - 800W Titanium
 - 1500W 277Vac
 - 2400W Titanium
 - 1400W -48Vdc

M-CRPS PSUs, a smaller form factor to free-up valuable real estate in Servers and Storage

 Next-Gen M-CRPS Power supplies, as part of the DC-MHS project, will come in 2 form factors : 73.5mm and 60mm (width), respectively 30% and 18% smaller than the 15th/16th generation PSUs :

- Live FW Update no need to turn off the server to update the PSU Firmware
- Signed FW images (Firmware security)

D P U

DPU (Data Processing Unit)

Silicon Chipset Options in Modern Servers

A quick primer

Central Processing Unit (CPU)

Runs Workloads

General purpose x86 cores running application software

Graphical Processing Unit (GPU)

Accelerates Specific Workloads

Optimized for parallel processing, enabling specific workloads, AI/ML, to be accelerated in hardware

Data Processing Unit (DPU)

Accelerates Infrastructure Services

Combination of a NIC ASIC and ARM cores and it is a server within a server. Runs and accelerates infrastructure services such as networking, storage, and security.

DPU Capabilities

Accelerate

Main DPU Value Propositions

Compute/ Workloads

Infrastructure

- Switch packets in hardware instead of in software
- Achieve line rate performance at 25GbE and 100GbE

Storage Stack

- Hardware accelerate NVMe/TCP and SDS
- Reduce storage performance jitter
- Hardware accelerated compression

Security Stack

- Isolate workloads from security services because they run on different processors
- Line rate packet inspection done in hardware
- In-flight encryption

Simplify Host Deployment

• Moving infrastructure services to the DPU simplifies workload deployment

Dell Has Two Sets of DPUs

Dell DPUs (vSphere on DPU)

Features

- Hardware accelerated NSX
- Hardware accelerated Distributed Switch
- Near Future: NVMe/TCP

Advantages

- Ease of management and integration into vSphere and iDRAC
- VxRail support
- DPU services are provided by VMware

DPU Vendors

- AMD/Pensando
- NVIDIA

Partner DPUs (Linux Stack)

Features

- Hardware accelerated firewall (Palo Alto, F5)
- OVN/OVS acceleration
- In-Flight encryption and TLS/SSL acceleration

Advantages

- Flexibility
- Multiple 3rd party ISVs are creating DPU services
- Broad set of use cases

DPU Vendors

- NVIDIA
- Intel

Hardware cannot switch between Dell DPU and Partner DPUs.

These are different part numbers, and the server recognizes them and treats them differently.

Partner DPUs currently does not support host servers running VMware vSphere OS

vmware^{*}

Data Processing Units

A DPU is a network adapter with ARM Cores integrated with hardware acceleration blocks, memory and storage that runs its own operating system and applications.

DPU helps free up the cores on the host system by offloading and running infrastructure services (networking, storage and security) and improve performance.

Offload and Accelerate Infrastructure services with DPUs

Services that can run on the DPUs

- HW accelerated Firewall
- In-Flight Encryption, TLS/SSL acceleration
- Packet Processing/Switching/Inspection
- NVMeoTCP
- Compression
- UPF Acceleration

Customers can develop their solution using Vendor SDKs or work with 3rd Party Software vendors to deploy solutions suited to their needs on the DPUs

Brand	DPU Model Number	DPU ASIC	Core Type	Host OS Supported	Port Speed	Number of Ports			
PCIe Adapter form-factor FHHL									
Nvidia	BlueField-2	BlueField-2	8 ARMv8 A72	Linux-Based	25GbE	2			
Nvidia	B3210E	BlueField-3	16 Arm Cortex-A78	Linux-Based	100GbE	2			
Nvidia	B3220	BlueField-3	16 Arm Cortex-A78	Linux-Based	200GbE	2			
Nvidia	B3140H^	BlueField-3	8 Arm Cortex-A78	Linux-Based	400GbE	1			
Intel	E2100-CCQDA2*	Mt Evans	16 ARM N1	Linux-Based	100GbE	2			
Intel	E2100-CCQDA2HL	Mt Evans	16 ARM N1	Linux-Based	100GbE	2			

*only FH ³/₄ length Form factor, will transition to the Half Length Intel DPU E2100-CCQDA2HL by mid-CY25 ^Marketed as SuperNIC (Cores can be turned off)

31 Copyright © Dell Inc. All Rights Reserved.

COOLING TECHNOLOGIES

Cooling Technologies

Copyright © Dell Inc. All Rights Reserved.

Growing Space constraints and Power requirements

- CPU size increase and additional number of Memory channels results in higher CPU TDPs, and space constraints within servers
- Growth in GPU TDPs and with higher CPU TDPs necessitate new solutions for cooling
- Rack level infrastructure and super pods expected to be future of infrastructure solutions

Over Next 2 generation of servers

Max CPU TDP expected to grow to ~500W from ~350W

Max GPU PCIe CEM TDP expected to grow to ~900W from ~350W

Max GPU SXM/OAM TDP expected to grow to ~1400W from ~750W

- Direct Liquid to Chip cooling necessary for highest TDP GPUs
- Workloads for 8-way SXM/OAM super pods eventually move to multi-node scale-up solutions
- ORv3-based rack infrastructure becomes direction for some workloads:
 - Very Large AI Training
 - Dense High TDP GPU and CPU Compute

Cooling Technology Comparisons

	Air cooling	Air + Supplemental	Direct Liquid Cooling (DLC)	Immersion
Cooling Solution Options	ပျို	رال +		Coolant Pump Coolant-to-Water Heat Exchange Coolant-to-Water Heat Exchange Dry Cooler Evisiting Chilled Water Loop
Products	 Traditional air-cooling & air-handling equipment Containment 	 In-row coolers Rear Door Heat Exchangers (RDHx) Containment (hot & cold aisle) 	 CPU/GPU Cold-plate loops Rack/facility level DLC products required 	Single-phase (1P) and Two-phase (2P) Immersion tank solutions
Environments	Traditional data centers	Traditional data centers, with facility water	Traditional data centers, with facility water	 Non-traditional spaces, no conditioned air required (ex warehouse) Note: facility water required
Main usage model	 Low to Mid-density racks Up to ~ 15kW/rack 	 Mid to High-density racks Up to ~30kW/rack 	 Systems with high TDP parts High-density racks, up to ~80kW/rack 	 Limited/no air cooling available High-density racks, or high TDP parts
Typical Cost Adder	NA	+	+ +	Single phase (1P): ╋ ╋ Two-phase (2P): ╋ ╋ ╋
Availability	Standard cooling	Standard server cooling + 3 rd party supplemental cooling solutions	Dell factory supported configurations	Dell OEM project engagement

The Dell Cooling Strategy

Continued innovation with

Air and Liquid cooled solutions 8 *8 Ě 5 kW Air *8 8 . 200+ kW (🌢 Air + DLC

Standards enabling interoperability & interchangeability

With standards and commonality, Scale the supply chain

Cooling technology available to serve the market

Enables high power chips
 Requires facility water to rack/row
 100% heat capture to facility water

- Enables high density racks

"At-the-Server" Cooling Hardware	Capacity	Attributes	Overview
Air	1 kW/U		 Traditional air-cooling utilizing fans and heatsinks. Heated air is released into the datacenter environment.
Immersion	1 kW/U	۵ 📔	 Equivalent in cooling performance to traditional air-cooling. Server immersed in a bath of oil-based liquid for heat transfer.
In-server Liquid-Assisted Air Cooling (iLAAC)	1.2 kW/U		 Utilizes liquid for heat transfer off the chip. Radiator enclosed in the server chassis to facilitate cooling the liquid.
Direct-to-Chip Liquid Cooling, Liquid-to-Air (L2A DLC)	3 kW/U		 Utilizes liquid for heat transfer off the chip. Liquid transfers heat to facility air in an external coolant distribution unit (CDU).
Direct-to-Chip Liquid Cooling, Liquid-to-Liquid (L2L DLC)	10 kW/U		 Utilizes liquid for heat transfer off the chip. Liquid transfers heat to facility water in an external coolant distribution unit (CDU).

"At-the-Rack" Cooling Hardware	Capacity	Attributes	Overview
Air / Immersion	20 kW/Rack	Same as above, respectively	 Air: Perimeter air handler (CRAH) to cool heated air. Immersion: Facility water plumbed to immersion tank which cools heated liquid.
Enclosed Cooling (EC)	30 kW/Rack	• 🖄	 Isolates hot air with rack dedicated air-cooling units, requires additional floor space. Heated air does not release into the datacenter environment. Warm water
Heat Capture Cabinet (HCC, concept)	70 kW/Rack	• 📓	 Isolated hot air with rack dedicated air-cooling units integrated into rack. Heated air does not release into the datacenter environment. Warm water
Rear Door Heat Exchanger (RDHx)	70 kW/Rack	•	 Air-cooling unit attached to rear of rack. Cold water Heated air is cooled and released into data center environment.
Coolant Distribution Unit, Liquid-to-Air (L2A CDU)	80 kW/Rack		 Liquid cooling unit either "in-rack" or as a "in-row" appliance. Heated liquid is cooled and released into data center environment.
Coolant Distribution Unit, Liquid-to-Liquid (L2L CDU)	100 kW/Rack		 Liquid cooling unit either "in-rack" or as a "in-row" appliance. Heated liquid is cooled by facility water which is then.

OCP OPEN ARCHITECTURE

OCP Open Architecture

37 Copyright © Dell Inc. All Rights Reserved.

https://www.opencompute.org/

OCP Open Architecture

DC-MHS (Datacenter ready Modular Hardware System) key tenets

- Drive interoperability between key elements of datacenter, edge and enterprise infrastructure
- Industry standard building blocks and supporting ingredients for greater agility, speed, and leverage

The DC-MHS R1 Mission

• What: Data Center – Modular Hardware System Revision 1.0

DC-MHS R1 envisions interoperability between key elements of datacenter, edge and enterprise infrastructure by providing consistent interfaces and form factors among modular building blocks.

DC-MHS R1 standardizes a collection of HPM (Host Processor Modules) form-factors and supporting ingredients to allow interoperability of HPMs and platforms.

- Why
 - 1. DC-MHS R1 aims to ultimately improve industry efficiency and innovation.
 - o Enable the CPU Suppliers to design and validate the circuit board under their CPUs
 - While preserving the ability for the rest of the supply chain to innovate beyond the CPU
 - 2. CPU Suppliers are enabled to innovate without barriers to adoption.
 - 3. Platform Suppliers may innovate without burden of redesigning HPMs
- When: Enabling for producing solutions late 2023, early 2024.
- Who:

Dell	Shawn Dube	shawn.dube@dell.com	
Google	Siamak Tavallaei	tavallaei@google.com	
HPE	Jean-Marie Verdun	verdun@hpe.com	
Intel	Brian Aspnes	brian.d.aspnes@intel.com	
Meta	Todd Westhauser	twesthauser@meta.com	
Microsoft	Mark A. Shaw	mashaw@microsoft.com	

DC-MHS: specifications

The Data Center – Modular Hardware System (DC-MHS) family of specifications are written to enable interoperability between key elements of datacenter and enterprise infrastructure by providing consistent interfaces and form factors among modular building blocks. As of September 2022, DC-MHS includes the following specification workstreams:

• M-FLW (Modular Hardware System FulL Width Specification) – Host Processor Module (HPM) form factor specification optimized for using the full width of a Standard EIA-310-D Rack mountable server. The specification is not limited to use within the EIA-310 Rack but is used to serve as a template for a common target where the design is expected to be utilized.

• **M-DNO** (Modular Hardware System Partial Width **D**ensity **O**ptimized Specification) – Host Processor Module (HPM) specification targeted to partial width (i.e. ¹/₂ width or ³/₄ width) form factors. Such form factors are often depth challenged and found not only in enterprise applications but also in Telecommunications, Cloud and Edge Deployments. While the EIA-310 Rack implementation is chosen as a key test case for use, the specification is not limited to use within the EIA-310-D Rack but is used to serve as a template for a common target where the design is expected to be utilized.

• M-CRPS (Modular Hardware System Common Redundant Power Supply Specification) – Specifies the power supply solutions and signaling expected to be utilized by DC-MHS compatible systems.

• M-PIC (Modular Hardware System Platform Infrastructure Connectivity Specification) – Specifies common elements needed to interface a Host Processor Module (HPM) to the platform/chassis infrastructure elements/subsystems. Examples include power management, control panel and cooling amongst others.

• M-XIO (Modular Hardware System Extensible I/O) – Specifies the high-speed connector hardware strategy. An M-XIO source connector enables entry and exit points between sources such as Motherboards, Host Processor Modules & RAID Controllers with peripheral subsystems such as PCIe risers, backplanes, etc. M-XIO includes the connector, high speed and management signal interface details and supported pinouts.

• M-PESTI (Modular Hardware System Peripheral Sideband Tunneling Interface) – Specifies a standard method for discovery of subsystems, self-describing attributes, and status (e.g., versus a priori knowledge/hard coding firmware and BIOS for fixed/limited configurations). Examples: vendor/module class, physical connectivity descriptions, add-in card presence, precise source to destination cable coupling determination.

CPU &

Memory

CPU & CPU &

Memory Memory

IO Power

HPM

42

CPU &

Memory

CPU &

Memory

CPU &

Memory

CPU &

Memory

HPM

DC-MHS: ingredients

- HPM Form-factors:
 - Dimensions, mounting, KOs, Connectors
- Power Supply:
 - Form-factor
 - Electrical operation
- System Connectivity (conn's, pins-outs, signaling)
 - PCIe/CXL, cabled and riser
 - Sideband Virtualization
 - Power Distribution
 - Control Panel
- Utilization of OCP NIC R3 and DC-SCM R2

Modular Form Factors

Modular Building Blocks

- Chassis
 - Full length (M-FLW)
 - Dense Optimized (M-DNO)

• Planar (HPM)

- Full width (M-FLW) 2S, 2DPC
- ³/₄ width (M-DNO ³/₄) 2S, 1DPC
- ¹/₂ width (M-DNO ¹/₂) 1S, 2DPC

Components

- BOSS
- Power distribution
- DC-SCM (IDRAC & OSM SW)
- PSU's (M-CRPS)
- Fan solution
- Riser (TBD)
- South IO placement
- Backplanes (TBD)

COOLING

Front Node

M-DNO 1/2

SRF 1S GNR SP GNR RIO 2DPC

M-DNO – Chassis 1U/2U3/4

Dell Leads with OCP Solutions for Large-scale AI & Dense Compute

Forward-thinking infrastructure that will scale to support multiple generations of the latest CPU and GPU technologies, with optimized power and cooling for energy efficiency

Delivered by expanded rack scale integration services

44 Copyright © Dell Inc. All Rights Reserved.

Dell Integrated Rack 7000

OCP Standards-based Rack Scale Infrastructure for Large-Scale AI and Dense Compute

Unparalleled simplicity

Cable-free liquid and power delivery.

Flexibility

Support multiple architectures in one rack.

Scalable

Grow as your compute demand grows. Disaggregated power for seamless scaling

Rapid deployment

Your entire HPC cluster at-scale with a white glove experience

Future-ready design

Support up to 480kW in each rack. Multigenerational compute support

Efficient

Integrated DLC for energy efficiency

Rainwater Infrastructure (Dell Integrated Rack 7000)

- ORv3 Standard based Infrastructure for Large AI & Dense Compute
- Designed for multigeneration & heterogenous technology (CPU, GPU & CPU+GPU)

Rack level solution for next-gen Dense Compute infrastructure

Optimized for Mainstream & Large-Scale deploys

- Rack scale clusters
- Multi-generational future proofing infrastructure

Standards based infrastructure that scales

- ORv3 racks supporting 44OU, 50OU
- Future proofed to scale up to 480kW with future platforms
- 18kW single AC input, 33kW dual AC input options in 1HCY25
- Up to 10kW per OU heat capture
- Compatible with Off the shelf CDUs

Rainwater Infrastructure View

Input connector Output Clip

High Density ORv3 + DLC 100% Heat Capture Concept

Dell PowerEdge M7725

The future of dense high-performance compute

Dense form factor

10U with 2x 2S server nodes, up to 72 nodes per rack

Uncompromised performance

The latest AMD EPYC 5th Gen CPUs with up to 27,000 cores per rack

Energy efficient

Hybrid cooling with air + liquid for optimized power utilization

Easy to deploy and manage

Cold aisle serviceability. Quick disconnects for cable free liquid connectivity. Front I/O cabling.

DCLTechnologies

72 72 nodes per rack

27K Up to 27,000 cores per rack 32%

32% higher performance than previous AMD processor

PowerEdge Dense Compute Server Brief

 Dense Compute offering with EPYC 5 2S CPUs

Leading the future of Dense Compute

Highest performance offering – 2x 2S / 1OU

- Up to 500W & 192 cores with EPYC 5
- 50 70% higher performance vs. Genoa
- 1 DPC DDR5 Memory at 6000MT/s

Optimized for cold Aisle serviceability

- Front I/O, 100% Gen5 enabled
- Two x16 IO Slots (Eth, IB & DPUs)
- Optional E3 & BOSS Module

Eliminates complex PSU cabling

• Blind-mates to DC Bus Bar

DLC to enable easier operation

• Quick disconnect

٠

- Hybrid Cooling liquid to CPUs, air for rest
- Near 100% heat capture for sustainable deployments

M7725 up to 72 nodes per rack

Dell PowerEdge XE9712 with NVIDIA GB200 NVL72

The future of dense acceleration for real time inference

Powering Generative Al

Up to 30x faster real-time LLM Performance

Energy efficient

Liquid cooled to maximize your datacenter power utilization

Lightning-fast connectivity 72 connected GPUs acting as one with NVLink technology

Rapid deployment

Your entire AI cluster atscale with a white glove experience

Al Factory

25 times more efficient than H100

8K For LLM Training, highest performance delta at 8k+ GPU Clusters **30X**

faster real-time trillionparameter LLM inference than H100

51 Copyright © Dell Inc. All Rights Reserved

XE9712 GB200 NVL72

Targeted towards the largest AI GPU clusters

Performance-at-scale

Part of a multi-rack reference network topology for modular growth and fast deployment

GB200 NVL72 scale-up architecture

72x B200 GPUs acting as one

- Rack-scale, multi-node NVLink @ 1.8TB/s
- Offered as single 136kW or 2x 73kW racks

I/O

- 1:1 NIC to GPU ratio for east west GPU traffic
- Bluefield3 DPUs for storage and in-band traffic

ORv3 Rack

- Bus bar & power Shelves
- ~136kW per GB200 NVL72

- New scale-up NVLink solution based on Grace Blackwell
- Very large AI at scale intended for "superpod" large model clusters of thousands of GPUs
- Leverages ORv3 rack & power infrastructure, eliminating PDUs from the solution (Rainwater Infrastructure)
- Direct liquid cooled in rack or in row

Grace Blackwell

Faster technology refresh

- Faster pace of newer generation CPUs
- Introduction of CPUs and GPUs by multiple vendors
- Adoption of new technology enablers
 - DDR5
 - CXL Memory
 - PCle Gen 5
 - EDSFF E3.S
 - Smart NICs
 - M-CRPS Power supplies
- DC-MHS enables faster time to market

Purpose-built to provide choices with Silicon Diversity

*subject to change

